ABSTRACT Anomalous aortic origin of coronary arteries (AAOCA) is a congenital disease that can lead to cardiac ischemia during intense physical activity. Although AAOCA is responsible for sudden cardiac death (SCD) among young athletes and soldiers, the mechanisms underlying the coronary occlusion during physical effort still have to be clarified. The present study investigates the correlation between geometric features of the anomaly and coronary lumen narrowing under aortic root dilatations. Idealized parametric computer-aided designed (CAD) models of the aortic root with anomalous and normal coronary are created and static finite element (FE) simulations of increasing aortic root expansions are carried out. Different coronary take-off angles and intramural penetrations are investigated to assess their role on coronary lumen narrowing. Results show that increasing aortic and coronary pressures lead to lumen expansions in normal coronaries, particularly in the proximal tract, while the expansion of anomalous coronary is impaired especially at the ostium. Concerning the geometric features of the anomaly, acute take-off angles cause elongated coronary ostia, with an eccentricity increasing with aortic expansion; the impact of intramural penetration of coronary on its luminal narrowing is limited. The present study provides a proof of concept of the biomechanical reasons underlying the lumen narrowing in AAOCA during aortic expansion, promoting the role of computational simulations as a tool to assess the mechanisms of this pathology.