Exposure to a combination of heat and hyperoxia during cycling at submaximal intensity does not alter thermoregulatory responses

Abstract

In this study, we tested the hypothesis that breathing hyperoxic air (FinO2 = 0.40) while exercising in a hot environment exerts negative effects on the total tissue level of haemoglobin concentration (tHb); core (Tcore) and skin (Tskin) temperatures; muscle activity; heart rate; blood concentration of lactate; pH; partial pressure of oxygen (PaO2) and carbon dioxide; arterial oxygen saturation (SaO2); and perceptual responses. Ten well-trained male athletes cycled at submaximal intensity at 21°C or 33°C in randomized order: first for 20 min while breathing normal air (FinO2 = 0.21) and then 10 min with FinO2 = 0.40 (HOX). At both temperatures, SaO2 and PaO2, but not tHb, were increased by HOX. Tskin and perception of exertion and thermal discomfort were higher at 33°C than 21°C (p < 0.01), but independent of FinO2. Tcore and muscle activity were the same under all conditions (p > 0.07). Blood lactate and heart rate were higher at 33°C than 21°C. In conclusion, during 30 min of submaximal cycling at 21°C or 33°C, Tcore, Tskin and Tbody, tHb, muscle activity and ratings of perceived exertion and thermal discomfort were the same under normoxic and hyperoxic conditions. Accordingly, breathing hyperoxic air (FinO2 = 0.40) did not affect thermoregulation under these conditions.

Keywords: Heat stress, Hyperthermia, Skin blood flow, Thermoregulation, Vasoconstriction 


Autor / Fonte:C Zinner, M Krueger, J L Reed, M Kohl-Bareis, H-C Holmberg, B Sperlich Biology of Sport 2016, 33 (1): 71-6
Link: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4763545/pdf/JBS-33-1192041.pdf